当前位置 :
单位矩阵正定吗
更新时间:2020-10-28 00:00:00

单位矩阵没有“正定”的说法,但如果一个实对称矩阵A与单位矩阵E合同,则矩阵A一定正定。例如:B为n阶矩阵,E为单位矩阵,a为正实数,在a充分大时,aE+B为正定矩阵。根据正定矩阵的定义及性质,判别对称矩阵A的正定性有两种方法:

1、求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。

2、计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。

保卡通专稿内容,转载请注明出处
不够精彩?
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有