当前位置 :
解拉格朗日方程的技巧
更新时间:2021-05-22 00:00:00

从第3个方程得到2z(λ+1)=0,即z=0或者λ=-1然后分两类讨论z=0,第4个方程变成xy+x-y+4=0前两个方程消去λ可以得到x(x-1)=y(y+1),整理成(x+y)(x-y-1)=0再分两种情况。

x=-y,代入xy+x-y+4=0得到一元二次方程,解出x=1±5^{1/2},相应的y=-x,z=0。

x=y+1,同样解一个一元二次方程,此时没有实数解λ=-1,此时前两个方程是线性方程,很容易解出x=-1,y=1,代入第4个方程得到z=±1,把这些情况综合一下就得到(-1,1,±1)是离远点最近的点。

拉格朗日方程,因约瑟夫·路易斯·拉格朗日而命名,是拉格朗日力学的主要方程,可以用来描述物体的运动,特别适用于理论物理的研究。拉格朗日方程的功能相等于牛顿力学中的牛顿第二定律。

保卡通专稿内容,转载请注明出处
不够精彩?
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有