当前位置 :
圆锥体积推导有几种方法
更新时间:2021-05-22 00:00:00

圆锥体体积的推导方法:

方法一:初等的方法

设圆锥高为H,底面半径为R,底面积S=π*R^2;

用平行于底面的平面把它切成n片,则每片的厚度为H/n;

可把每片近似看做底半径为k/n*r的圆柱;

其体积为(π*k/n*r)^2*h/n,对k=1到n求和得:

S=πR^2H*(1/6/n^3)*n*(n+1)*(2n+1),

令n=无穷大,则S=1/3πR^2H。

方法二:通过圆柱来推导

任何物体的体积都离不开底面积×高的求法;

圆柱的体积公式是V=Sh;

把与它等底等高的圆锥装满水,倒进圆锥体里,你可以发现倒3次才能倒满圆柱。

所以与圆柱等底等高的圆锥是这个圆柱的三分之一;

所以,圆锥的体积就是V=1/3Sh三分之一乘底面积乘高。

保卡通专稿内容,转载请注明出处
不够精彩?
保卡通(baokatong.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 保卡通 baokatong.com 版权所有